Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1293578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149052

RESUMEN

Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.

2.
Eur Respir J ; 62(4)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696564

RESUMEN

BACKGROUND: Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS: CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS: 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS: Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Dimetilsulfóxido , Mutación
3.
Skin Health Dis ; 3(1): e161, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36751320

RESUMEN

Background: A high proportion of patients with Cystic Fibrosis (CF) also present the rare skin disease aquagenic palmoplantar keratoderma. A possible link between this condition and absence of a functional CF Transmembrane conductance Regulator protein in the sweat acinus and collecting duct remains unknown. Methods: In-depth characterization of sweat proteome profiles was performed in 25 CF patients compared to 12 healthy controls. A 20 µL sweat sample was collected after pilocarpine iontophoresis and liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomic analysis was performed. Results: Sweat proteome profile of CF patients was significantly different from that of healthy subjects with 57 differentially expressed proteins. Cystic Fibrosis sweat proteome was characterized by an increase in 25 proteins including proteases (Kallikrein 7 and 13, Phospholipase B domain containing 1, Cathepsin A L2 and B, Lysosomal Pro-X carboxypeptidase); proinflammatory proteins (Annexin A2, Chitinase-3-like protein 1); cytochrome c and transglutaminases. Thirty-two proteins were downregulated in CF sweat including proteases (Elastase 2), antioxidative protein FAM129 B; membrane-bound transporter SLC6A14 and regulator protein Sodium-hydrogen antiporter 3 regulator 1. Conclusion: This study is the first to report in-depth characterization of endogenous peptides in CF sweat and could help understand the complex physiology of the sweat gland. The proteome profile highlights the unbalanced proteolytic and proinflammatory activity of sweat in CF. These results also suggest a defect in pathways involved in skin barrier integrity in CF patients. Sweat proteome profile could prove to be a useful tool in the context of personalized medicine in CF.

4.
Hum Mol Genet ; 20(14): 2745-59, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21518732

RESUMEN

Cystic fibrosis (CF), a multisystem disease caused by CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations, is associated with an abnormal inflammatory response and compromised redox homeostasis in the airways. Recent evidence suggests that dysfunctional CFTR leads to redox imbalance and to mitochondrial reduced glutathione (mtGSH) depletion in CF models. This study was designed to investigate the consequences of mtGSH depletion on mitochondrial function and inflammatory response. mtGSH depletion was confirmed in colonic epithelium of CFTR-null mice and in CFTR-mutated human epithelial cells. GSH uptake experiments performed on isolated mitochondria suggest that mtGSH depletion is not due to a defective GSH transport capacity by CF mitochondria, despite the decreased expression of two mtGSH carriers, oxoglutarate carrier and dicarboxylate carrier. CM-H(2)DCFDA [5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester] fluorescence and aconitase activity showed an increase in reactive oxygen species levels in CFTR-defective cells and a pro-oxidative environment within CF mitochondria. The activities of respiratory chain complexes were further examined. Results showed a selective loss of Complex I (CI) function in CF models associated with an altered mitochondrial membrane potential (Δψ(m)). CI analysis showed normal expression but an overoxidation of its NADH-ubiquinone oxidoreductase Fe-S protein 1 subunit. GSH monoethyl ester (GSH-EE) significantly enhanced mtGSH levels in the IB3-1/C38 model and reversed CI inhibition, suggesting that mtGSH depletion is responsible for the loss of CI activity. Furthermore, GSH-EE attenuated Δψ(m) depolarization and restored normal IL-8 secretion by CFTR-defective cells. These studies provide evidence for a critical role of a mtGSH defect in mitochondrial dysfunction and abnormal IL-8 secretion in CF cells and reveal the therapeutic potential of mitochondria-targeted antioxidants in CF.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Glutatión/análogos & derivados , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Protectores contra Radiación/farmacología , Animales , Línea Celular , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Glutatión/farmacología , Interleucina-8/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos CFTR , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Mutación , Recuperación de la Función/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...